Menyelesaikan Sistem Persamaan Linear dengan Invers Matriks :
Sistem persamaan linier yang terdiri atas persamaan-persamaan (1), (2), dan (3) di atas dapat juga ditulis dengan bentuk notasi matriks AB = C seperti berikut
Solusinya adalah matriks B. Agar kita dapat mengisolasi B sendirian di salah satu sisi dari persamaan di atas, kita kalikan kedua sisi dari persamaan di atas dengan invers dari matriks A.
Sekarang, untuk mencari
B kita perlu mencari
A−1. Silakan melihat halaman tentang
matriks untuk belajar bagaimana mencari invers dari sebuah matriks.
Jadi solusinya adalah x = 2, y = 3, z = 4.
Metode ini dapat digunakan untuk menyelesaikan sistem persamaan linier dengan n variabel. Kalkulator di atas juga menggunakan metode ini untuk menyelesaikan sistem persamaan linier.
Eliminasi Gauss / Eliminasi Gauss-Jordan
Sistem persamaan liniear yang terdiri atas persamaan-persamaan(1), (2), dan (3) dapat juga dinyatakan dalam bentuk matriks teraugmentasi A seperti berikut
Dengan melakukan serangkaian operasi baris (Eliminasi Gauss), kita dapat menyederhanakan matriks di atas untuk menjadi matriks Eselon-baris.
A = |
| | |
|
1 | 0,375 | -0,75 | 0,125 |
0 | 1 | -0,4 | 1,4 |
0 | 0 | 1 | 4 |
| |
| | |
|
Kemudian kita bisa substitusikan kembali nilai-nilai yang kita dapat untuk mencari nilai dari semua variabel. Atau, kita juga bisa meneruskan dengan serangkaian operasi baris lagi sehingga matriks di atas menjadi matriks yang Eselon-baris tereduksi (dengan menggunakan Eliminasi Gauss-Jordan).
Dengan melakukan operasi Eliminasi Gauss-Jordan, kita mendapatkan solusi dari sistem persamaan linier di atas pada kolom terakhir: x = 2, y = 3, z = 4.
0 komentar:
Posting Komentar